Jad Kabbara, J. C. Cheung

Uphill Battles in Language Processing @ ACL

Abstract

Linguistic style conveys the social context in which communication occurs and defines particular ways of using language to engage with the audiences to which the text is accessible. In this work, we are interested in the task of stylistic transfer in natural language generation (NLG) systems, which could have applications in the dissemination of knowledge across styles, automatic summarization and author obfuscation. The main challenges in this task involve the lack of parallel training data and the difficulty in using stylistic features to control generation. To address these challenges, we plan to investigate neural network approaches to NLG to automatically learn and incorporate stylistic features in the process of language generation. We identify several evaluation criteria, and propose manual and automatic evaluation approaches.